
From Two-Way to Multi-Way: A Comparative Study for Map-Reduce
Join Algorithms

MARWA HUSSIEN MOHAMED

 Information Systems
 Arab Academy for Science, Technology and Maritime Transport

CAIRO, EGYPT
Eng_maroo1@yahoo.com

MOHAMED HELMY KHAFAGY

 Computer Science
Fayoum University
CAIRO, EGYPT

Mhk00@fayoum.edu.eg

MOHAMED HASAN IBRAHIM
Information Systems
Fayoum University
CAIRO, EGYPT

Mhi11@fayoum.edu.eg

Abstract: - Map-Reduce are a programming model which is widely used to extract valuable information from
enormous volumes of data. Map-reduce designed to support heterogeneous datasets. Apache Hadoop map-
reduce used extensively to uncover hidden pattern like, data mining, SQL, etc. The most important operation
for data analysis is joining operation. But, map-reduce framework doesn’t directly support join algorithm. This
paper explain and compare two- way and multi- way map-reduce join algorithms for map reduce also we
implement MR join Algorithms and show the performance of each phase in MR join Algorithms. Our
experimental results show that map side join and map merge join in two-way join algorithms has longest time
according to pre-processing step sorting data and reduce side cascade join has the longest time at Multi-Way
join algorithms.
Key-Words: - Hadoop, Map-Reduce, Multi-Way Join, Two-Way Join, Ubuntu

1 Introduction
Map-Reduce [1, 2] at academic or business area are
widely used for vast amount data analysis. It uses
commodity of considerable number hardware to
process large scale of data in a reasonable time. It’s
less cost for mining valuable hidden information in
this significant data compared to previous
techniques. The major benefits of map-Reduce are
an easiest framework to analysis data across shared
nothing clusters and handling fault tolerance.

 Cloud computing and data-intensive analysis [3]
are applications do massive operations with
processing millions of records and produce rarely
updates with analytic systems. Parallel DBMS,
Map-Reduce (MR) paradigm, and columnar storage
these techniques had multiple data sets and used to
analysis large scale data [3]. All previous
algorithms Needs to perform various join operation

due to large scale of data and needed to get more

valuable information after joining.
The Apache Hadoop [4] it's using simple
programming models to handle and distribute huge
data sets via computer clusters. It's can handle
thousands of machine, it's can detect and handle
failure can happened between application layers to
support fault tolerance.

Unfortunately, high-level language Pig [3] is a
framework for analyzing large unstructured and
semi-structured data on top of Hadoop and Pig
Latin is declarative language used like SQL and it's
the high level language interface for Hadoop. Hive
query language is the primary data processing
method for cloud data platform which is powered
by Apache Hive. Hive query language can support
users to handle, manage and store data on cloud.

Hive query language using Hadoop map reduce to
accept queries from users. So that high-level
language Pig, Pig Latin and Hive QL [3] are

WSEAS TRANSACTIONS on COMMUNICATIONS
Marwa Hussien Mohamed,

Mohamed Helmy Khafagy, Mohamed Hasan Ibrahim

E-ISSN: 2224-2864 129 Volume 17, 2018

mailto:Eng_maroo1@yahoo.com
mailto:Mhk00@fayoum.edu.eg
mailto:Mhi11@fayoum.edu.eg

methods to solve joined algorithm problem that is
not supported in Map-Reduce.

This paper compare some existing types of Two-
way and multi-way join algorithms that's used map
side join and reduce side join. Algorithms we will
discuss in Two-way join are map side join, In
memory join, Broadcast join, Map merge join
,Memory backed join ,Reduce side join ,
Repartition join and bloom filter join all this
algorithms are used only one phase to do join
operation. Some types of two-way join algorithms
has more than one phase to do join operation like
semi-join, per split semi-join and map reduce
merge join. Multi-way join algorithms are Map
Side join, Reduce Side one shot join and reduce
side cascade join. All this algorithms we do
experimental results on various data size and
running data using TPC benchmark to show
algorithms performance.

The rest of this paper is organized as follow:
Section 2 describe map-reduce architecture and
covers Hadoop, section 3 describe various types of
two-way and multi-way map-reduce join
algorithms and list some of advantage and
disadvantage of these algorithms, Section 4
describe comparative analysis of join algorithms,
Section 5 show our experimental results while
increasing in data size and finally section 6
conclusion and future work.

2. Map-reduce and Hadoop

Map-reduce are [1] a programming model
popularized by Google since 2004. It’s used with
large-scale datasets and processing data on a
shared-nothing cluster.

Hadoop Apache Hadoop [4] is an open source,
and it's used new ways to store and process big
data.

2.1 Map-reduce framework
Map-Reduce accomplish high performance by
partitioning the processing into small units of work
that can run in parallel across thousand of nodes in
the cluster. Users only need to write the function
without thinking of parallel and distributed
processing [2, 4].

Applications like graph analysis, text analysis,
Indexing and Search, etc… are difficult to
implement by standard SQL. Arising of map-
reduce solve this problem by processing and
analyzing an enormous number of multi-structured
data. Map-Reduce have a high scalability and fault

tolerance by data partitioning and replication [5]
and load balancing [2, 6 and 7].

The programming model is consisting of the
following:

1. Do some iteration on the input.
2. Generate a key / value pair from the input.
3. Using the key of every input became

easiest to group all intermediate values.
4. Make iteration based on resulting groups.
5. Do Reduction on each group to generate

output.
Map-Reduce[4] user computation focus mainly on
two important functions Map and Reduce figure 1
shows the operation of Map-Reduce and figure 2
show the Map-Reduce execution overview .

Fig.1 Operation of map-reduce

Implementation of map-reduce
1 Map-reduce has one master node sends job to

all task tracker by divide the input file into M
splits by using the key value pair and following
task tracker jobs by using heart beat to avoided
failed.

2 Task Tracker writes their output to a local disk
and partition this output result to some reduce
tasks.

3 Job Tracker assign reduce tasks to task tracker
Then reduce workers read the new key/value
input data from local disk then produce final
output result after sort and aggregate data by
using the key.

4 If one task tracker fails job tracker assign node
task to another one workers.

2.2 Hadoop
Hadoop Map-Reduce [4] is an open source
implementation by Apache. Hadoop Distributed
File System (HDFS) used to distribute data across

Step 1: the MAP Phase
User provides the MAP function

• Input: (key, value)
• Output: (key, value) System applies

the map function in parallel to all (input
key, value) pairs in the input file.

Map: (k1: v1) [(k2:v2)]
Step 2: the REDUCE Phase

User provides the REDUCE function:
• Input: (Intermediate key, bag of

values)
• Output: all pairs with the same key

are grouped together and sent values to
the same reducer to get the output result.

Reduce: (k2: [v2]) [(k3: v3)]

WSEAS TRANSACTIONS on COMMUNICATIONS
Marwa Hussien Mohamed,

Mohamed Helmy Khafagy, Mohamed Hasan Ibrahim

E-ISSN: 2224-2864 130 Volume 17, 2018

machines in the network. It has two separate
servers one to store file system metadata (name-
node) and the second to store application data (data
node).

Name node run on a single master machine, and it
has all information about other machines in the
cluster. Data node processes run on all other
machines and communicate with name node to
obtain data on their local drive and works like
workers. Figure 3 shows map task and reduce task
at Hadoop.

The Map-Reduce framework of Hadoop [8]
consists of single Job Tracker and a number of
Task Tracker process The Job Tracker usually runs
on the same master machine as the Name node.
Task Tracker runs at the data node.

Fig. 2 An execution overview of map-reduce based
on [4].

Fig. 3 Shows map task and reduce task at Hadoop-
based on [8].

3 Map-Reduce Join Algorithms
 Map Reduce is a programming model build to
support heterogeneous data for analyzing and
finding hidden pattern but isn’t support join
algorithms directly as in[4,8]. We will discuss
different joining two-way and multi-way datasets
algorithms using map-reduce
Basic methods for processing joins in Map-Reduce
include:
I. Distributing the smallest operand(s) to all
nodes, and performing the join by the Map or
Reduce function.
2. Map-side join and reduce-side join.

3.1 Two-way join algorithms
Two-way join algorithms are used to join two
dataset R and L as in equation 1.
 R (A, B) ⋈ L (B, C) (1)

In this section we will cover two-way join
algorithms using map function only to do join
operation like map side join, In Memory join,
broadcast join, memory backed join and map merge
join. Other types of two-way join using map
function and reduce function like reduce side join,
repartition join and bloom filter join. Finally two-
way join using more than one phase and used map
function and reduce function are semi-join and per
split semi-join.

3.1.1 Map side join
 Map side join is a natural way of join algorithms
for datasets that perform join by using the map
function only and isn’t any needs for reduce
function.
 Map side join framework [3,4] is more helpful to
be used when the size of one dataset is relatively
too small to fit in memory. It uses the Hadoop
framework to do a pre map phase that used
memory hash table to read data from HDFS and
splitting each table data into the same number of
partition then sort each table by using the join key.
 Mappers must group all records with the same
key in the same partition finally at map phase for
each partition scan the data and join based on
key/value pairs and output the result. We used the
abbreviation MSJ for this algorithm and Figure 4
Illustrate data flow for map-Side Join
Advantages:

1. Map side join are more efficient for
minimizing the cost because we are avoid
using shuffling and reduce phases.

DFS

Input
data

Reduce&
Output

Merge

Sort and
Shuffle

Map

WSEAS TRANSACTIONS on COMMUNICATIONS
Marwa Hussien Mohamed,

Mohamed Helmy Khafagy, Mohamed Hasan Ibrahim

E-ISSN: 2224-2864 131 Volume 17, 2018

Disadvantage:
1. Every dataset must be sorted and

partitioned under condition of the join key.
2. Map side join can’t be used on the tables

which contain huge data in both of them.
3. There is a problem when the smaller set

can’t be fit into memory.

Fig.4 Data Flow for Map-Side Join based on [4].
3.1.2 In-memory Join
 It’s an improved join type of map side join it used
when one of the two datasets are small enough to
be fit in memory as described in [3]. It has some
restriction that the small dataset must be
completely fit in memory. It uses hash tables to
broadcast the small dataset to every mapper and
save a copy in memory. it uses a lookup hash table
to find matches values between the two data sets
from the other input data. Algorithm keeps away
from moving and sorting input and output data for
two relations. We used the abbreviation IMJ for
this algorithm Figure 5 shows pseudo code for in
memory join [3]
Advantage:

1. Resistance to data skew.

2. We are reading part of the second dataset
according to the join condition

Disadvantage:

1. Smaller data must be completely fitted in
memory

Fig. 5 shows pseudo code for in memory joins [3]
3.1.3 Broadcast join
Broadcast join algorithm[3,4] are the same as in
memory join but small data set must fit in the

memory but not completely it's called hash join
because it's used hash table .load one dataset into
memory, stream over other dataset. We used BJ
abbreviation for this algorithm. Figure 6 show
pseudo-code for broadcast Join [9]
Broadcast join implementation:

1. if R fits into memory and R << S
2. Distribute R to all nodes
3. Map over S, loads R in memory for each

mapper and hashed by join key
4. look up join key in R For every tuple in S,
5. There are no reducers, unless for

regrouping or resorting tuples.
Advantage:

1. Decrease I/O time by avoiding shuffling
data

2. Decrease I/O cost by avoiding using reduce
phase.

Disadvantage:
1. Sensitive to data skew
2. When the size of table more than memory

size can cause memory overflow.

3.1.4 Map merge join
Map merge join algorithms adding a new merge
function to the map side join algorithms also reduce
phased are not used by this join algorithm[2].
Mappers get two data sets and partition the data
sets equally on constraint of join key and sorting
data sets. Mappers read the input key/value pair
and merge them, then emit resulting Tuples. It
works similarly to sort-merge join in DBMS[8] and
we used the abbreviation MMJ .

Advantage:
1. We aren’t forced to read other data set

completely it being on demand
2. Memory overflow can be avoided
Disadvantage:
1. We need to sort two datasets
2. Sensitive to data skew

 3.1.5 Memory backed join
Memory backed join[4] it works similar to
broadcast join that fit the small relation completely
in memory of each node of the cluster with some
different . It used when one of the two data sets is
can’t be fit into memory. We decide the partition
size of the node memory and partition data
according to this node size. Smaller data sets can be
read from distributed cache or a distributed file
system. Mappers can iterate over the data sets
according to data partition numbers.
 A Memcached open source system is used to
store datasets into memory of many machines by

WSEAS TRANSACTIONS on COMMUNICATIONS
Marwa Hussien Mohamed,

Mohamed Helmy Khafagy, Mohamed Hasan Ibrahim

E-ISSN: 2224-2864 132 Volume 17, 2018

distributed key-value and perform join if join key
matches. We used the abbreviation MBJ.

Advantage:
1. Mappers at each node read the same number of

tuples sequentially so that this algorithm has a
resistance to data skew.

Disadvantage:
1. One of the two data sets size must be

completely fit the memory or divide the data
size according to memory size.

Fig. 6 Show pseudo-code for broadcast joins [9].
3.1.6 Reduce side join

Reduce side join has no limitation on the size of
your datasets, it can join many data sets together at
once as you need and used to join multiple large
datasets are being joined by a foreign key[11].

Map function prepares join operation to emit the
join key as intermediate key/value , and map over
both data sets to tag every record with a table name
and outputs a list of tagged key/ value pair to know
where the record come from. Hash partitioned
function is used to partition, sort and merge the
output (intermediate key/value) of the map function
and distributes all to reduces.

All records with the same join key and different
tag are fit to the same reducer and perform cross
product to these records to join results. Figure 7
shows a full map phase for reduce side join [8]
Figure 8 shows complete reduce phase of a reduce
side join [8] Figure 9 shows data flow example for
reduce side join figure 10 pseudo code for reduce
side join [3] we used the abbreviation RSJ for this
algorithm.

Advantage:
1. Easiest to implement.
2. Reduce side join can use any datasets size with

no limitation.
3. Reduce side join has a most time-consuming

because it contains an additional phase to
transmit the data from one phase to another
phase over the network.

Disadvantage:
1. Reduce-Side join approach may cause a

network bottleneck due to shuffling of both
datasets over the network.

2. Sensitivity to the data skew.

Fig. 7 Full map tasks for reduce side join [8].

Fig. 8 Shows complete reduce phase of a reduce
side join [9]

Fig. 9 Data flow Example for Reduce side join

WSEAS TRANSACTIONS on COMMUNICATIONS
Marwa Hussien Mohamed,

Mohamed Helmy Khafagy, Mohamed Hasan Ibrahim

E-ISSN: 2224-2864 133 Volume 17, 2018

3.1.7 Repartition joins

Repartition join is a type of reduce side join that works
by adding a tag to the input key and to value to
determine any table where record. It partition records
according to join key and group all records together
before reduce phase. At the shuffling phase, all records
with the same join key are fitted same reducer.

It solves the buffering problem for all records during
the join process. Figure 11 show pseudo-code for
repartition join [10].We used the abbreviation RJ for
this algorithm.
Algorithm steps:

1. Uses composite Keys: tag+ key
2. Where tag is an identifier for the parent table
3. (key, value) = (tag + key, value)
4. Partition phase hashes the key part of the

compound key
5. Guarantees tuples with same join key are sent

to the same reducer
6. Intermediate data is sorted only by key part
7. We load the smaller relation into memory by

using the tag portion of compound key and
perform the join

Improved repartitions join:
Map function tags the table key not the record tag then
output composite join key / table tag as in [10]. This
impact on performance and reduce network load

Fig. 10 pseudo code for reduce side join[3]
Advantage:
1. Solved large data sets size that extended than

memory size by partitioning data.
2. Resistance to data skew
Disadvantage:
1. All records in the large table may be buffered.
2. The key cardinality is small.
3. Adding a tag to record and value can cause

network bottleneck and overhead on network load.

Fig. 11. show pseudo-code for repartition joins [10]
3.1.8 Semi -join

Often, used when the size of one data sets is
extremely larger than the other. Multiple records will
not be used for join so that deleting these usefulness
records will affect the network workload and size of
datasets to join .we used SJ as abbreviation for this
algorithm.

The semi-join framework has three phases:
Firstly, works a whole map-reduce job that in the

map function using a hash table to determine a set of
unique join key from second table whose join key are
foreign key and do map function to get all join key and
use reduce function to eliminate redundant records and
output one file has join key .

Secondly, map phase load output file from phase one
into memory and load the second table into HDFS and
do map function to get key value pair to compare with
the output table from first phase and get all key records
can do join with this result and output second file from
this phase.

Finally, we have output files from the second phase
with join key records and load first table in memory
and do join using broadcast join as discussed earlier.
Figure 12 show pseudo-code for semi-join [10].
Semi join requires 3 Map-Reduce jobs:

1. Get a list of unique join keys, S.uk (Map +
Reduce)

2. Load S.uk into memory and loop through R.
If a record’s key is found in S.uk, emit it. Now
we have a list of records in R to be joined.

3. Use a broadcast join to perform the join with S

WSEAS TRANSACTIONS on COMMUNICATIONS
Marwa Hussien Mohamed,

Mohamed Helmy Khafagy, Mohamed Hasan Ibrahim

E-ISSN: 2224-2864 134 Volume 17, 2018

Fig. 12. Show pseudo-code for semi-join [10]
Advantage:

1. Get high performance at large tables data.
2. Increase the performance by deleting

usefulness data.
Disadvantage:

1. Extra scan for the large table that affects the
I/O costs.

2. Takes more time than previous algorithms
with small size of data.

3.1.9 Per-split semi-join

Per split semi-join[10] solve the problem with semi-
join that we send all filtered records to every split of
second table that's will not matched join key so that
per-split semi-join partition first table join key as
number of partition without using reduce function with
the first phase .we used PSJ as abbreviation for this
algorithm.
Consist of three separately map-reduce phase:
1. Map phase generates the set of unique (different,

individual) join keys in a split Mi of M and stores
them in the Distributed file system [12,13,14]
Mi.uk

2. Map function distributes all N records in memory
hash table to read unique join key may join with
Mi.uk files.

3. Each corresponding record is outputted with a tag
NLi , which is used by the reduce function to
collect all the records in N that will join with Mi
Files with tag NLi join with Mi files with direct
join.

Advantage:
1. Get high performance at large tables data.
2. Increase the performance by using deleting
3. Move only records from the large dataset that

will join with small one.
Disadvantage:
1. Second phase are highly cost.
2. Takes more time than previous algorithms with

small size of data.

3.1.10 Bloom filter join

Bloom filter is used to filter out redundant records
from one of the two data sets at the map phase [15] by
constructing bloom filters at the map phase as in [16].
Difficult to apply bloom filter because input data at
map-reduce has no processing order its schedules map
reduce tasks only not the input splits and bloom filter
need to be distributed to all nodes in the cluster.

Bloom filter are used to reduce the number of
candidate pairs to consider the similarity. Figure 13
show pseudo-code for bloom filter join [3] Figure 14
show bloom filter data flow [16]. We used BFJ as
abbreviation for this algorithm.

Hadoop algorithm modified to apply bloom filter:
1. Input dataset at map phase is processed

sequentially for joins.
2. Input data set processing order effect on the

processing cost.
3. Bloom filter execution flow is build dynamically

within a single map-reduce job.

Blooms filter execution overflow:
1. Job submission: for every table a map task and

reduce task are created by job tracker and
distribute tasks on task tracker (m1 map task for
table r and m2 map task for s and reduce tasks)

2. First map phase: first map task tracker read the
input split for the tasks and produces key value
pair output Local filter construction: every key-
value pair generated.

3. Map tasks are divided into r partitions and sent to
task tracker. At each key partition bloom filter are
constructed.

4. Global filter merging: when m1 map tasks are
completed job tracker send to all task trackers to
send their local filter resulted to job tracker. Then
job tracker construct global filter to dataset R.
when job tracker finishes their tasks new map
phase to the other data sets is build.

5. Second map phase: we repeat the first map phase
steps again for the other data sets till job tracker
end the process then reduce phase to the two data
sets are constructed

6. 6)Reduce phase: it gets two map phases output like
reduce phase at Hadoop and then sorts the
intermediate pairs then run reduce function to
produce output in the last output path.

Advantage:
1. Map tasks are assigned in order of the data sets.
2. Bloom filter are constructed in a distributed

fashion.
3. Bloom filter Increased join performance.
4. Number of map tasks and reduce tasks used are

decreased by using bloom filter to join operation.
5. While the intermediate records are reduced reduce

phase are completed first.

WSEAS TRANSACTIONS on COMMUNICATIONS
Marwa Hussien Mohamed,

Mohamed Helmy Khafagy, Mohamed Hasan Ibrahim

E-ISSN: 2224-2864 135 Volume 17, 2018

Fig.13. Show pseudo-code for bloom filter joins [3]
Disadvantage:

1. Performance of join algorithm depends on the
bloom filter size.

2. Data sets with large size can effect on bloom
filter performance.

3. Bloom filter isn’t filter out tuples before join so it
may cause redundant.

4. While global filter for the first map phase still
working we can’t start another map function so
that is may increase in time.

5. If the number of intermediate results has
significant execution time is increased compared
to Hadoop.

Fig.14. bloom filter data flow [14]

3.1.11 Map-Reduce Merge Join

Map-reduce merge join[17] used with massive datasets
(heterogeneous datasets) it has two completely map-
reduce phases and one merge phase that select the data
from reduce phase output result according to join
condition . At merge phase, we have two types of join
algorithms we can use a hash join or sort merge join.
Figure 15 show overview of map-reduce merge

Signature of map-reduce merge are given below:
1. Map phase: input (k1, v1) → list of intermediate

[(K2, v2)].
2. Reduce phase: aggregates list (K2, [v2]) →output

another list (K2, [v3]).
3. Merge phase: combine the two reduce outputs

((K2, [v3]), (k3, [v4])) → output new join result
(k4, [v5])

Fig.15 Overview of Map-Reduce Merge based on [17].
Map Reduce merge join algorithm works by a map
phase and reduce phase independently on the two data
sets, merge phase takes two reduce phases output
according to the join condition.

Internally operation inside merge phase[18]:
1. Partition Selector is selector that determines which

data partitions produced by up-stream reducers
should be retrieved and then merged.

2. Configurable iterators – it can implement two
different join algorithms by two logical operators
it includes sort-merge join and nested loop join

3. Processor – used to handle processing data from
different datasets

4. Merger – used to apply merger function for
processing data from two sources. Figure 16 show
data flow for map reduce module merge [18].

Advantage:
1. It can be used with heterogeneous data sets.
2. It used efficiently with two-way join and can be

used with multi-way join.
3. Using a sort merge join is efficient than nested

loop join when using equal join.

WSEAS TRANSACTIONS on COMMUNICATIONS
Marwa Hussien Mohamed,

Mohamed Helmy Khafagy, Mohamed Hasan Ibrahim

E-ISSN: 2224-2864 136 Volume 17, 2018

4. Using nested loop join with complicated joins
increases the complexity to understand the
execution flow of a job.

5. It increases flexibility and usability.

Disadvantage:

1. Adding new merge phases that increase the
I/O cost.

2. Increase in complexity for data flow.

Fig.16 data flow for map reduce module merge based
on [18].

3.2 Multi-way joins algorithms

Multi-way join usually used to join more than two data
sets like R and S and T tables [19] as in equation 2.

 R (A, B) ⋈ L (B, C) ⋈ T (C,D) (2)

In this section we will cover the following multi-way
join algorithms map side join, reduce side on shot join
and reduce side cascade join and explain advantage
and disadvantage of every algorithm.

3.2.1 Map-Side Join

It works like to two-way map side join algorithms it
handles many data sets according to some constraints
as in [11] .All datasets must use same comparator and
sort according to them. Only one practitioner must be
used to partition all the datasets. A key used with each
data sets are used in the same partition and this key
must be identical.
Advantages:
1. Map side join are more efficient for minimizing

the cost because we are avoid using shuffling and
reduce phases.

Disadvantage:
1. Every dataset must be sorted and partitioned under

condition of the join key.
3.2.2 Reduce-Side One-Shot Join

Reduce side algorithm uses a function from reduce
side join from two-way join which uses tags value for
every record to know the record and datasets [11, 20].
It passes Tables Tags for every table need to be joined
to know how many tables mapper and reduces the
work with it. Figure 17 shows data flow for reduces
side one shot join.
 It has three phases listed as following:
1. Map phase: Mapper reads data from the input data

splits and tags each tuple with the table tag based
on the datasets they originate from.

2. Partitioning and Grouping Phase: it is ignoring the
tag value and partition and group data according to
the key only.

3. Reduce phase: The reduce phase gets the tuples
sorted according to key, tag. All tuples have the
same join key values are going to the same
reducer. Every join key has a single reducer
function. Buffers are created by the reducer to hold
all the datasets without the last one. Then output
joined tuples have written.

Advantages:
1. No needs for a preprocessing phase.
2. No intermediate results.
Disadvantage:
1. Some memory problems from buffering tuples in

reduce side.
2. Sensitive to data skew

3.2.3 Reduce-Side Cascade Join

Reduce-Side Cascade Join [11] is the exact same as
reduce side join of two data sets and it’s an iterative
function to reduce side join. It uses calling program to
create multiple join datasets only two datasets at the
same time. Considering if we have four datasets (t1, t2,
t3, t4) we join t1 with t2 result t5 then join t3 with t4
result t6 finally join t5 with t6 this is the final output.
Advantages
1. Best for I/O cost and needed for buffering records

rarely.
2. Can join any number of datasets.
Disadvantages
1. Multiple jobs in the cluster need to set up that

cases non-trivial overhead.
2. many memory spaces are taken by intermediate

results

Data 1 Data 2

Data 3

Partition selector

Left processor Right processor

Left Iterators Right Iterators

Merger

WSEAS TRANSACTIONS on COMMUNICATIONS
Marwa Hussien Mohamed,

Mohamed Helmy Khafagy, Mohamed Hasan Ibrahim

E-ISSN: 2224-2864 137 Volume 17, 2018

3.2.4 Comparison for Multiway joins

According to our previous illustration to multi-way
join algorithm we can decide which type of algorithms
may be preferable according to our data size we need
to join [11]. When we have the same number of tuples
and same key space Reduce-Side One-Shot Join
algorithm performance are nearly to the map side join
algorithms.

Reduce side one shot are failed and memory
overflow when increasing the size of datasets over
than the total memory size .reduce side cascade join is
the best join algorithms when increasing data sets size
than memory size and when reduce side one shot join
has memory overflow.

4 Comparative Analysis of Join

Algorithms
The join algorithm features are presented in table 1.
Range practitioner used to solve approaches that are
sensitive to data skew [3]. Algorithms without tagging
have not additional workload on memory for
transferring extra data through the network [3], and it’s
more preferable. Map-reduce join algorithms
performance is improved in case of semi-join data low
selectivity [10] and memory overflow possibilities are
reduced.

According to table 1 most of the join algorithms are
sensitive to data skew except in memory join and
memory backed join. Join Algorithms using map side
join are preferable than reduce side join according to
shuffling and sorting phases and network overload.
Preprocessing steps before map side phases are
affected in performance .using bloom filter algorithms
affect in performance and avoid memory overflow. If
one of the two data sets is small enough to fit in
memory we preferable to use map side join.

Fig. 17 Data flow for Reduce side one shot join based
on [11].

TABLE 1: JOIN ALGORITHMS FEATURES

Two-way
join

algorithm

Pre-
processi

ng

number
of

phases

Need
distr.
cach

e

Memory
overflow

Join
algorithm

Map-side
join yes one no yes Hash join

Broadcast
join no one yes

Size of
smaller

dataset is
large

Hash join

Reduce
side join

Yes for
one of
the two
datasets

two no

Tuples
with the
same key

have
large size

Cross
product

Map
merge
join

Yes for
two

datasets
one no no Sort Merge

join

Memory
backed

join
no one no

Size of
the

Smaller
dataset is
large than
memory

size

Hash join

Repartitio
n join

Yes for
one

of the
two

datasets

two no

Number
tuples for
the same

key is
large

Sort Merge
join

Semi -
join yes three yes

Size of
filtered
datasets
is large

Hash join

Per-split
semi-join yes three yes

Size of
filtered
datasets
is large

Hash join

Bloom
filter join no two yes

Size of
data large

than
bloom
filter

Hash join

Map-
Reduce
merge
join

no three yes

Size of
the two
datasets
is very
large

Nested loop
join and sort

merge join

5 EXPERIMENTAL RESULTS
We present experimental results of our
implementation. We have 3 cluster machines one of
them master node (name node) and two other are slave
node (data node). Cluster configuration consists of
Intel core i5 2.4 GHz processor, 4 GB memory for
every node, 500 GB SATA disk and operating system
Ubuntu 20.203.0 Linux with Apache Hadoop release
1.2.1.

5.1 Dataset
We use TPC-H benchmark [21] dataset to evaluate our
implementation with original Hadoop. We use two
table customers and orders to join according to join
key where O_CUSTKEY= C_CUSTKEY where
customer table has 500,000 record and table orders has

WSEAS TRANSACTIONS on COMMUNICATIONS
Marwa Hussien Mohamed,

Mohamed Helmy Khafagy, Mohamed Hasan Ibrahim

E-ISSN: 2224-2864 138 Volume 17, 2018

1,500,000 records as the start size for our experiment
and increasing number of records for two tables as
shown in table 2 .

Table 2: Number of Records in Tables

Number of records Order table Customer table
2 million 1,500,000 500,000
4 million 2,500,000 1,500,000
6 million 4,000,000 2,000,000
10 million 6,000,000 4,000,000
12 million 8,000,000 4,000,000

5.2 Two-Way Join Experimental Result

We present the execution time performance for every
phase of join at map-reduce like sort, map, shuffle,
reduce phases time Figure 18 has different graphs
show Two Way Join algorithms Result-performance
while increasing in data size.

 our experiment result show that map side join and
map merge join has the worst time compared with the
other join algorithms to complete join according to
preprocessing phase sorting data running time for this
two algorithms are increasing in time by 40% from 10
million records to 12 million records .

Reduce side join and repartition side join using two
phases shuffle and reduce phase that's increase in cost
but reduce in running time compare to map side join
and map merge join. Repartition join used join key to
repartition data and using table tag to complete join
phase this step takes long time than reduce side join at
10 million records to 12 million records reduce side
join increased in time by 19% and 48% for repartition
join.

Bloom filter join has reduced data shuffling problem
that takes time as in repartition join and reduce side
join by constructing bloom filter as preprocessing step
and eliminating unused record to join from the second
table at map phase while running data from 10 million
record to 12 million records time increased by 18 % .

In memory join and broadcast join and memory
backed join has the best time performance because it's
using hash table and distributed cache to do join and
isn't needed to use sorting or shuffling or reducing
phases that increase in cost bust when data size
increased than memory size cause memory overflow

Figure 18 (F) show the total time for each algorithm
at different size of data and table 3 has a total time for
each join algorithms with different data size that show
change in running time.

Algorithms of two-way join with more than one
phase chart figure 19 show total join time because
semi-join and presplit semi-join has different three
map-reduce phases. Semi join and per-split semi-join
algorithms are highly cost with small data sets but
while increasing in data size do the best performance
time than two-way join algorithms discussed earlier
according to extra scan for large table and figure 18
show that semi-join running time better than presplit

semi-join according to very highly cost for the second
phase and extra scan for large table running time from
10 million records to 12 million records increased by
2% for semi-join and 9% for presplit semi-join.

Table 3: Total time for all join algorithms

Join algorithm 2
million

4
million

6
million

10
million

12
million

In memory Join
(IMJ) 30 43 44 48 61

Broadcast Join
(BJ) 31 46 48 51 64

MemoryBacked
Join(MBJ) 32 48 49 52 66

bloomfilter Join
(BFJ) 45 59 90 108 128

ReduceSide
Join (RSJ) 54 71 109 130 155

Repartition Join
 (RJ) 87 101 133 143 212

Map Side Join
(MSJ) 162 198 245 268 378

MapMerge Join
(MMJ) 164 203 250 275 387

Semi Join
 (SJ) 140 143 146 150 160

Per -Split Semi
Join
(PSJ)

160 164 168 170 175

 Fig.18-a. 2 million records

 Fig.18-b. 4 million records

WSEAS TRANSACTIONS on COMMUNICATIONS
Marwa Hussien Mohamed,

Mohamed Helmy Khafagy, Mohamed Hasan Ibrahim

E-ISSN: 2224-2864 139 Volume 17, 2018

 Fig.18-c. 6 million records

Fig.18-d. 10 million records

 Fig.18-e. 12 million records

Fig.18-f. Total time for each algorithm
Fig.18 Two way join result per phase with different
size of data.

Fig.19 Semi -join and per split semi join result with
different size of data.

3.1 Multi-way join experimental result

We run our experiments on three different datasets at
one time. We use three tables’ customer table has
4,000,000 records, order table has 8,000,000 records
and Lineitem table has 12,000,000 records Figure 20
shows that reduce side cascade join has worst time
performance according to adding tag to every record
and shuffling phase that affect performance and
joining two tables only at one time then repeat join
operations according to number of tables.

Reduce side one shot has better performance time
than reduce side cascade join. Map side join has the
best time according to avoided using shuffling and
reducing phases that take time and increase in cost.

Fig.20 Multi-way joins total time

6 Conclusion and Future Work

This work show comparative study of join algorithms
in map reduce for two-way and multi-way join
algorithms. Using map side join is affecting join
performance than reduce side join and decrease I/O
costs. But map side join isn’t useful for large data set.

our experimental result show the difference
performance time between map side join and reduce
side join algorithms that we conclude that map merge
join and map side join has largest time to get join
results and broadcast join has least time according to
using shuffling phase at reduce side join. And we show

WSEAS TRANSACTIONS on COMMUNICATIONS
Marwa Hussien Mohamed,

Mohamed Helmy Khafagy, Mohamed Hasan Ibrahim

E-ISSN: 2224-2864 140 Volume 17, 2018

the difference increasing in time running for every
algorithm when increasing in data size. We discuss
some types for multi-way join algorithms and show the
difference in performance between theses algorithms
we show by experimental result that reduce side
cascade join has longest time and map side join the
least time to get final join result.

In the future work we want to implement the join
algorithms using several datasets benchmarks [21, 22]
and conduct performance measurement and increasing
in data size to show difference time running for multi-
way join algorithms.

References:
[1] Dean, J., and Ghemawat, S.: ‘MapReduce:

simplified data processing on large clusters’,
Communications of the ACM, 2008, 51, (1), pp.
107-113

[2] Kyong-Ha Lee, H.C., Bongki Moon: ‘Parallel
Data Processing with MapReduce: A Survey’.
Proc. SIGMODDecember 2011 pp. Pages

[3] Pigul, A.: ‘Comparative Study Parallel Join
Algorithms for MapReduce environment’2013 pp.
Pages

[4] VIKAS JADHAV1, J.A., SUNIL DORWANI2:
‘JOIN ALGORITHMS USING MAPREDUCE:
A SURVEY’, International Conference on
Electrical Engineering and Computer Science, 21-
April-2013

[5] Ebada Sarhan, Atif Ghalwash,Mohamed
Khafagy,Agent-Based Replication for Scaling
Back-end Databases of Dynamic Content Web
Sites”,ICCOMP'08 Proceedings of the 12th
WSEAS international conference on Computers

[6] Ebada Sarhan, Atif Ghalwash,Mohamed Khafagy
,Queue Weighting Load-Balancing Technique for
Database Replication in Dynamic Content Web
Sites ",APPLIED COMPUTER SCIENCE
(ACS'09) University of Genova, Genova, Italy,
2009, Pages 50-55

[7] Ahmed M Wahdan Hesham, A. Hefny, Mohamed
Helmy Khafagy,” Comparative Study Load
Balance Algorithms for Map Reduce
Environment” International Journal of Applied
Information Systems,2014, Issues 7(11),pp 41-50.

[8] V.VIJAYALAKSHMI, A.A., S.NAGADIVYA:
‘THE SURVEY ON MAPREDUCE’,
V.Vijayalakshmi et al./ International Journal of
Engineering Science and Technology (IJEST), 07
July 2012, Vol. 4 (0975-5462), pp.1-8

[9] Palla, K.: ‘A comparative analysis of join
algorithms using the Hadoop map/reduce
framework’, Master of science thesis. School of
informatics, University of Edinburgh, 2009

[10] Blanas, S., Patel, J.M., Ercegovac, V., Rao, J.,
Shekita, E.J., and Tian, Y.: ‘A comparison of join
algorithms for log processing in MapReduce’.
Proc. Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data
2010 pp. Pages

[11] Chandar, J.: ‘Join Algorithms using
Map/Reduce’, Magisterarb. University of
Edinburgh, 2010

[12] Khafagy, M.H. ; Feel, H.T.A.,Distributed
Ontology Cloud Storage System”
IEEE,Proceedings of the 2012 Second
Symposium on Network Cloud Computing and
Applications Pages48-52

[13] al Feel, H.T. ; Khafagy, M.H.OCSS: Ontology
Cloud Storage System”,IEEE Network Cloud
Computing and Applications (NCCA), 2011 First
International Symposium on Pages 9-13

[14] Haytham Al Feel, Mohamed Khafagy, Search
content via Cloud Storage System. International
Journal of Computer Science Issues
(IJCSI)bVolume 8 Issue 6, 2011

[15] Min Chen, S. Mao, Y. Liu, "Big Data: A
Survey", ACM/Springer Mobile Networks and
Applications (ACM MONET) , Vol. 19, No. 2,
pp. 171-209, April 2014

[16] Lee, T., Kim, K., and Kim, H.-J.: ‘Join Processing
Using Bloom Filter in MapReduce’. Proc.
Proceedings of the 2012 ACM Research in
Applied Computation Symposium2012 pp. Pages

[17] Jiang, D., Tung, A., and Chen, G.: ‘Map-join-
reduce: Toward scalable and efficient data
analysis on large clusters’, Knowledge and Data
Engineering, IEEE Transactions on, 2011, 23, (9),
pp.

[18] Marwa Hussien Mohamed and Mohamed Helmy
Khafagy, "Hash semi cascade join for joining
multi-way map reduce," 2015 SAI Intelligent
Systems Conference (IntelliSys), London, 2015,
pp. 355-361.

[19] Mina Samir Shenouda, Mohamed Helmy
Khafagy, Samah Ahmed Senbel,” JOMR: Multi-
join Optimizer Technique to Enhance Map-
Reduce Job”, The 9th International Conference on
INFOrmatics and Systems (INFOS2014),2014 pp
80-86

[20] YongChul Kwon, M.B., Bill Howe,Jerome Rolia:
‘A Study of Skew in MapReduce
Applications’2012 pp.

[21] www.tpc.org
[22] Ebada Sarhan, Atif Ghalwash, Mohamed

Khafagy, Specification and implementation of
dynamic web site benchmark in
telecommunication area, Proceedings of the 12th
WSEAS international conference on Computers
2008 Pages 863-86

WSEAS TRANSACTIONS on COMMUNICATIONS
Marwa Hussien Mohamed,

Mohamed Helmy Khafagy, Mohamed Hasan Ibrahim

E-ISSN: 2224-2864 141 Volume 17, 2018

http://www.wseas.us/conferences/2009/genova/acs
http://www.wseas.us/conferences/2009/genova/acs
http://www.wseas.us/conferences/2009/genova/acs
http://xplorebcpaz.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Khafagy,%20M.H..QT.&newsearch=true
http://xplorebcpaz.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Feel,%20H.T.A..QT.&newsearch=true
http://dl.acm.org/citation.cfm?id=2476785
http://dl.acm.org/citation.cfm?id=2476785
http://dl.acm.org/citation.cfm?id=2476785
http://xplorebcpaz.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.al%20Feel,%20H.T..QT.&searchWithin=p_Author_Ids:38233427300&newsearch=true
http://xplorebcpaz.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Khafagy,%20M.H..QT.&searchWithin=p_Author_Ids:38096545600&newsearch=true
http://xplorebcpaz.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Khafagy,%20M.H..QT.&searchWithin=p_Author_Ids:38096545600&newsearch=true
http://xplorebcpaz.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Khafagy,%20M.H..QT.&searchWithin=p_Author_Ids:38096545600&newsearch=true
http://xplorebcpaz.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Khafagy,%20M.H..QT.&searchWithin=p_Author_Ids:38096545600&newsearch=true
http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=16940784&AN=73204422&h=rjKsswd8mNfL7PTjy8cGCFIvD%2BxQ2LAJeHgiiBO1ajXNwe5A3YrSAz2eO54m37MkrHrB96Z%2FyQhgQQ82SB%2FOIA%3D%3D&crl=c
http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=16940784&AN=73204422&h=rjKsswd8mNfL7PTjy8cGCFIvD%2BxQ2LAJeHgiiBO1ajXNwe5A3YrSAz2eO54m37MkrHrB96Z%2FyQhgQQ82SB%2FOIA%3D%3D&crl=c
http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=16940784&AN=73204422&h=rjKsswd8mNfL7PTjy8cGCFIvD%2BxQ2LAJeHgiiBO1ajXNwe5A3YrSAz2eO54m37MkrHrB96Z%2FyQhgQQ82SB%2FOIA%3D%3D&crl=c
http://www.springer.com/engineering/signals/journal/11036
http://dl.acm.org/citation.cfm?id=1513752
http://dl.acm.org/citation.cfm?id=1513752
http://dl.acm.org/citation.cfm?id=1513752
http://dl.acm.org/citation.cfm?id=1513752

	Do some iteration on the input.
	Generate a key / value pair from the input.
	Using the key of every input became easiest to group all intermediate values.
	Make iteration based on resulting groups.
	Do Reduction on each group to generate output.
	Implementation of map-reduce
	Map-reduce has one master node sends job to all task tracker by divide the input file into M splits by using the key value pair and following task tracker jobs by using heart beat to avoided failed.
	Task Tracker writes their output to a local disk and partition this output result to some reduce tasks.
	Job Tracker assign reduce tasks to task tracker Then reduce workers read the new key/value input data from local disk then produce final output result after sort and aggregate data by using the key.
	If one task tracker fails job tracker assign node task to another one workers.
	Step 1: the MAP Phase
	User provides the MAP function
	• Input: (key, value)
	• Output: (key, value) System applies the map function in parallel to all (input key, value) pairs in the input file.
	Step 2: the REDUCE Phase
	User provides the REDUCE function:
	• Input: (Intermediate key, bag of values)
	• Output: all pairs with the same key are grouped together and sent values to the same reducer to get the output result.
	Distributing the smallest operand(s) to all nodes, and performing the join by the Map or Reduce function.
	Map-side join and reduce-side join.
	Repartition join is a type of reduce side join that works by adding a tag to the input key and to value to determine any table where record. It partition records according to join key and group all records together before reduce phase. At the shufflin...
	It solves the buffering problem for all records during the join process. Figure 11 show pseudo-code for repartition join [10].We used the abbreviation RJ for this algorithm.
	Uses composite Keys: tag+ key
	Where tag is an identifier for the parent table
	Improved repartitions join:
	Map function tags the table key not the record tag then output composite join key / table tag as in [10]. This impact on performance and reduce network load
	Often, used when the size of one data sets is extremely larger than the other. Multiple records will not be used for join so that deleting these usefulness records will affect the network workload and size of datasets to join .we used SJ as abbreviati...
	The semi-join framework has three phases:
	Firstly, works a whole map-reduce job that in the map function using a hash table to determine a set of unique join key from second table whose join key are foreign key and do map function to get all join key and use reduce function to eliminate redun...
	Secondly, map phase load output file from phase one into memory and load the second table into HDFS and do map function to get key value pair to compare with the output table from first phase and get all key records can do join with this result and ou...
	Finally, we have output files from the second phase with join key records and load first table in memory and do join using broadcast join as discussed earlier. Figure 12 show pseudo-code for semi-join [10].
	Semi join requires 3 Map-Reduce jobs:
	Get a list of unique join keys, S.uk (Map + Reduce)
	Load S.uk into memory and loop through R. If a record’s key is found in S.uk, emit it. Now we have a list of records in R to be joined.
	Use a broadcast join to perform the join with S
	Per split semi-join[10] solve the problem with semi-join that we send all filtered records to every split of second table that's will not matched join key so that per-split semi-join partition first table join key as number of partition without using ...
	Bloom filter is used to filter out redundant records from one of the two data sets at the map phase [15] by constructing bloom filters at the map phase as in [16]. Difficult to apply bloom filter because input data at map-reduce has no processing orde...
	Bloom filter are used to reduce the number of candidate pairs to consider the similarity. Figure 13 show pseudo-code for bloom filter join [3] Figure 14 show bloom filter data flow [16]. We used BFJ as abbreviation for this algorithm.
	Advantage:
	Disadvantage:
	Performance of join algorithm depends on the bloom filter size.
	Data sets with large size can effect on bloom filter performance.
	Bloom filter isn’t filter out tuples before join so it may cause redundant.
	While global filter for the first map phase still working we can’t start another map function so that is may increase in time.
	If the number of intermediate results has significant execution time is increased compared to Hadoop.
	Map-reduce merge join[17] used with massive datasets (heterogeneous datasets) it has two completely map-reduce phases and one merge phase that select the data from reduce phase output result according to join condition . At merge phase, we have two ty...
	Map Reduce merge join algorithm works by a map phase and reduce phase independently on the two data sets, merge phase takes two reduce phases output according to the join condition.
	Multi-way join usually used to join more than two data sets like R and S and T tables [19] as in equation 2.
	R (A, B) ⋈ L (B, C) ⋈ T (C,D) (2)
	In this section we will cover the following multi-way join algorithms map side join, reduce side on shot join and reduce side cascade join and explain advantage and disadvantage of every algorithm.
	Map-Side Join
	It works like to two-way map side join algorithms it handles many data sets according to some constraints as in [11] .All datasets must use same comparator and sort according to them. Only one practitioner must be used to partition all the datasets. A...
	Reduce-Side One-Shot Join
	Reduce-Side Cascade Join
	Comparison for Multiway joins
	Dataset
	Two-Way Join Experimental Result
	Multi-way join experimental result

