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Abstract: - Map-Reduce are a programming model which is widely used to extract valuable information from 
enormous volumes of data. Map-reduce designed to support heterogeneous datasets. Apache Hadoop map-
reduce used extensively to uncover hidden pattern like, data mining, SQL, etc. The most important operation 
for data analysis is joining operation. But, map-reduce framework doesn’t directly support join algorithm.  This 
paper explain and compare two- way and multi- way map-reduce join algorithms for map reduce also we 
implement MR join Algorithms and show the performance of each phase in MR join Algorithms. Our 
experimental results show that map side join and map merge join in two-way join algorithms has longest time 
according to pre-processing step sorting data and reduce side cascade join has the longest time at Multi-Way 
join algorithms.  
Key-Words: - Hadoop, Map-Reduce, Multi-Way Join, Two-Way Join, Ubuntu 
 

1 Introduction 
Map-Reduce [1, 2] at academic or business area are 
widely used for vast amount data analysis. It uses 
commodity of considerable number hardware to 
process large scale of data in a reasonable time. It’s 
less cost for mining valuable hidden information in 
this significant data compared to previous 
techniques. The major benefits of map-Reduce are 
an easiest framework to analysis data across shared 
nothing clusters and handling fault tolerance.  

 Cloud computing and data-intensive analysis [3] 
are applications do massive operations with 
processing millions of  records and produce rarely 
updates with analytic systems. Parallel DBMS, 
Map-Reduce (MR) paradigm, and columnar storage 
these techniques had multiple data sets and used to 
analysis large scale data [3]. All previous 
algorithms Needs to perform various join operation  

 

 
due to large scale of data and needed to get more 

valuable information after joining. 
The Apache Hadoop [4] it's using simple 
programming models to handle and distribute huge 
data sets via computer clusters. It's can handle 
thousands of machine, it's can detect and handle 
failure can happened between application layers to 
support fault tolerance. 

Unfortunately, high-level language Pig [3] is a 
framework for analyzing large unstructured and 
semi-structured data on top of Hadoop and Pig 
Latin is declarative language used like SQL and it's 
the high level language interface for Hadoop. Hive 
query language is the primary data processing 
method for cloud data platform which is powered 
by Apache Hive.  Hive query language can support 
users to handle, manage and store data on cloud. 

Hive query language using Hadoop map reduce to 
accept queries from users. So that high-level 
language Pig, Pig Latin and Hive QL [3] are 
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methods to solve joined algorithm problem that is 
not supported in Map-Reduce.  

This paper compare some existing types of Two-
way and multi-way join algorithms that's used map 
side join and reduce side join. Algorithms we will 
discuss in Two-way join are map side join, In 
memory join, Broadcast join, Map merge join 
,Memory backed join ,Reduce side join , 
Repartition join and bloom filter join all this 
algorithms are used only one phase to do join 
operation. Some types of two-way join algorithms 
has more than one phase to do join operation like 
semi-join, per split semi-join and map reduce 
merge join. Multi-way join algorithms are Map 
Side join, Reduce Side one shot join and reduce 
side cascade join. All this algorithms we do 
experimental results on various data size and 
running data using TPC benchmark to show 
algorithms performance. 

The rest of this paper is organized as follow: 
Section 2 describe map-reduce architecture and 
covers Hadoop, section 3 describe various types of 
two-way and multi-way map-reduce join 
algorithms and list some of advantage and 
disadvantage of these algorithms, Section 4 
describe comparative analysis of join algorithms, 
Section 5 show our experimental results while 
increasing in data size and finally section 6 
conclusion and future work.  

2. Map-reduce and Hadoop 

Map-reduce are [1] a programming model 
popularized by Google since 2004. It’s used with 
large-scale datasets and processing data on a 
shared-nothing cluster. 

Hadoop Apache Hadoop [4] is an open source, 
and it's used new ways to store and process big 
data. 
 
  
2.1 Map-reduce framework 
Map-Reduce accomplish high performance by 
partitioning the processing into small units of work 
that can run in parallel across thousand of nodes in 
the cluster. Users only need to write the function 
without thinking of parallel and distributed 
processing [2, 4]. 

Applications like graph analysis, text analysis, 
Indexing and Search, etc… are difficult to 
implement by standard SQL. Arising of map-
reduce solve this problem by processing and 
analyzing an enormous number of multi-structured 
data. Map-Reduce have a high scalability and fault 

tolerance by data partitioning and replication [5] 
and load balancing [2, 6 and 7]. 

The programming model is consisting of the 
following: 

1. Do some iteration on the input. 
2. Generate a key / value pair from the input. 
3. Using the key of every input became 

easiest to group all intermediate values. 
4. Make iteration based on resulting groups. 
5. Do Reduction on each group to generate 

output. 
Map-Reduce[4] user computation focus mainly on 
two important functions Map and Reduce figure 1 
shows the operation of Map-Reduce and figure 2 
show the Map-Reduce execution overview . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Operation of map-reduce 

Implementation of map-reduce  
1 Map-reduce has one master node sends job to 

all task tracker by divide the input file into M 
splits by using the key value pair and following 
task tracker jobs by using heart beat to avoided 
failed.  

2 Task Tracker writes their output to a local disk 
and partition this output result to some reduce 
tasks. 

3 Job Tracker assign reduce tasks to task tracker 
Then reduce workers read the new key/value 
input data from local disk then produce final 
output result after sort and aggregate data by 
using the key. 

4 If one task tracker fails job tracker assign node 
task to another one workers. 

 
2.2 Hadoop 
Hadoop Map-Reduce [4] is an open source 
implementation by Apache. Hadoop Distributed 
File System (HDFS) used to distribute data across 

Step 1: the MAP Phase 
User provides the MAP function  

• Input: (key, value) 
• Output: (key, value) System applies 

the map function in parallel to all (input 
key, value) pairs in the input file. 

Map: (k1: v1)  [(k2:v2)] 
Step 2: the REDUCE Phase 

User provides the REDUCE function: 
• Input: (Intermediate key, bag of 

values) 
• Output: all pairs with the same key 

are grouped together and sent values to 
the same reducer to get the output result. 

Reduce: (k2: [v2]) [(k3: v3)] 
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machines in the network. It has two separate 
servers one to store file system metadata (name-
node) and the second to store application data (data 
node).  

Name node run on a single master machine, and it 
has all information about other machines in the 
cluster. Data node processes run on all other 
machines and communicate with name node to 
obtain data on their local drive and works like 
workers. Figure 3 shows map task and reduce task 
at Hadoop. 

The Map-Reduce framework of Hadoop [8] 
consists of single Job Tracker and a number of 
Task Tracker process The Job Tracker usually runs 
on the same master machine as the Name node. 
Task Tracker runs at the data node. 

 
Fig. 2 An execution overview of map-reduce based 
on [4]. 

 
Fig. 3 Shows map task and reduce task at Hadoop-
based on [8]. 

 
 

3 Map-Reduce Join Algorithms 
 Map Reduce is a programming model build to 
support heterogeneous data for analyzing and 
finding hidden pattern but isn’t support join 
algorithms directly as in[4,8]. We will discuss 
different joining two-way and multi-way datasets 
algorithms using map-reduce 
Basic methods for processing joins in Map-Reduce 
include: 
I.  Distributing the smallest operand(s) to all 
nodes, and performing the join by the Map or 
Reduce function.  
2. Map-side join and reduce-side join. 

 
3.1 Two-way join algorithms 
Two-way join algorithms are used to join two 
dataset R and L as in equation 1. 
                    R (A, B) ⋈ L (B, C)                   (1) 

In this section we will cover two-way join 
algorithms using map function only to do join 
operation like map side join, In Memory join, 
broadcast join, memory backed join and map merge 
join. Other types of two-way join using map 
function and reduce function like reduce side join, 
repartition join and bloom filter join. Finally two-
way join using more than one phase and used map 
function and reduce function are semi-join and per 
split semi-join. 
 
3.1.1 Map side join 
 Map side join is a natural way of join algorithms 
for datasets that perform join by using the map 
function only and isn’t any needs for reduce 
function. 
   Map side join framework [3,4] is more helpful to 
be used when the size of one dataset is relatively 
too small to fit in memory. It uses the Hadoop 
framework to do a pre map phase that used 
memory hash table to read data from HDFS and 
splitting each table data into the same number of 
partition then sort each table by using the join key. 
   Mappers must group all records with the same 
key in the same partition finally at map phase for 
each partition scan the data and join based on 
key/value pairs and output the result. We used the 
abbreviation MSJ for this algorithm and Figure 4 
Illustrate data flow for map-Side Join 
Advantages: 

1. Map side join are more efficient for 
minimizing the cost because we are avoid 
using shuffling and reduce phases. 
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Disadvantage: 
1. Every dataset must be sorted and 

partitioned under condition of the join key. 
2. Map side join can’t be used on the tables 

which contain huge data in both of them.  
3. There is a problem when the smaller set 

can’t be fit into memory. 

 
Fig.4 Data Flow for Map-Side Join based on [4]. 
3.1.2 In-memory Join  
 It’s an improved join type of map side join it used 
when one of the two datasets are small enough to 
be fit in memory as described in [3]. It has some 
restriction that the small dataset must be 
completely fit in memory. It uses hash tables to 
broadcast the small dataset to every mapper and 
save a copy in memory. it uses a lookup hash table 
to find matches values between the two data sets 
from the other input data. Algorithm keeps away 
from moving and sorting input and output data for 
two relations. We used the abbreviation IMJ for 
this algorithm Figure 5 shows pseudo code for in 
memory join [3] 
Advantage: 

1. Resistance to data skew. 

2. We are reading part of the second dataset 
according to the join condition 

Disadvantage: 

1. Smaller data must be completely fitted in 
memory 

 

 

 

 
 
Fig. 5 shows pseudo code for in memory joins [3] 
3.1.3 Broadcast join 
Broadcast join algorithm[3,4] are the same as in 
memory join but small data set must fit in the 

memory but not completely it's called hash join 
because it's used hash table .load one dataset into 
memory, stream over other dataset. We used BJ 
abbreviation for this algorithm. Figure 6 show 
pseudo-code for broadcast Join [9] 
Broadcast join implementation: 

1. if  R fits into memory and  R << S  
2. Distribute R to all nodes 
3. Map over S, loads R in memory for each 

mapper and  hashed by join key 
4. look up join key in R For every tuple in S,  
5. There are no reducers, unless for 

regrouping or resorting tuples. 
Advantage: 

1. Decrease I/O time by avoiding shuffling 
data 

2. Decrease I/O cost by avoiding using reduce 
phase. 

Disadvantage: 
1. Sensitive to data skew 
2. When the size of table more than memory 

size can cause memory overflow. 
 

3.1.4 Map merge join 
Map merge join algorithms adding a new merge 
function to the map side join algorithms also reduce 
phased are not used by this join algorithm[2]. 
Mappers get two data sets and partition the data 
sets equally on constraint of join key and sorting 
data sets. Mappers read the input key/value pair 
and merge them, then emit resulting Tuples. It 
works similarly to sort-merge join in DBMS[8] and 
we used the abbreviation MMJ . 

Advantage: 
1. We aren’t forced to read other data set 

completely it being on demand  
2. Memory overflow can be avoided 
Disadvantage: 
1. We need to sort two datasets 
2. Sensitive to data skew 

 
 3.1.5 Memory backed join 
Memory backed join[4] it works similar to 
broadcast join that fit the small relation completely 
in memory of each node of the cluster with some 
different  . It used when one of the two data sets is 
can’t be fit into memory. We decide the partition 
size of the node memory and partition data 
according to this node size. Smaller data sets can be 
read from distributed cache or a distributed file 
system. Mappers can iterate over the data sets 
according to data partition numbers.   
   A Memcached open source system is used to 
store datasets into memory of many machines by 
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distributed key-value and perform join if join key 
matches.  We used the abbreviation MBJ. 
 
Advantage: 
1. Mappers at each node read the same number of 

tuples sequentially so that this algorithm has a 
resistance to data skew. 

 
Disadvantage: 
1. One of the two data sets size must be 

completely fit the memory or divide the data 
size according to memory size. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Show pseudo-code for broadcast joins [9]. 
3.1.6 Reduce side join 

Reduce side join has no limitation on the size of 
your datasets, it can join many data sets together at 
once as you need and used to join multiple large 
datasets are being joined by a foreign key[11]. 

Map function prepares join operation to emit the 
join key as intermediate key/value , and map over 
both data sets to tag every record with a table name 
and outputs a list of tagged key/ value pair to know 
where the record come from. Hash partitioned 
function is used to partition, sort and merge the 
output (intermediate key/value) of the map function 
and distributes all to reduces.  

All records with the same join key and different 
tag are fit to the same reducer and perform cross 
product to these records to join results. Figure 7 
shows a full map phase for reduce side join [8] 
Figure 8 shows complete reduce phase of a reduce 
side join [8] Figure 9 shows data flow example for 
reduce side join figure 10 pseudo code for reduce 
side join [3] we used the abbreviation RSJ for this 
algorithm. 

 
Advantage:  
1. Easiest to implement. 
2.  Reduce side join can use any datasets size with 

no limitation. 
3. Reduce side join has a most time-consuming 

because it contains an additional phase to 
transmit the data from one phase to another 
phase over the network. 

Disadvantage: 
1. Reduce-Side join approach may cause a 

network bottleneck due to shuffling of both 
datasets over the network. 

2. Sensitivity to the data skew. 

 
Fig. 7 Full map tasks for reduce side join [8]. 

 
Fig. 8 Shows complete reduce phase of a reduce 
side join [9] 

 
Fig. 9 Data flow Example for Reduce side join
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3.1.7 Repartition joins 

Repartition join is a type of reduce side join that works 
by adding a tag to the input key and to value to 
determine any table where record. It partition records 
according to join key and group all records together 
before reduce phase. At the shuffling phase, all records 
with the same join key are fitted same reducer.  

It solves the buffering problem for all records during 
the join process. Figure 11 show pseudo-code for 
repartition join [10].We used the abbreviation RJ for 
this algorithm. 
Algorithm steps: 

1. Uses composite Keys: tag+ key  
2. Where tag is an identifier for the parent table  
3. (key, value) = (tag + key, value) 
4. Partition phase hashes the key part of the 

compound key 
5. Guarantees tuples with same join key are sent 

to the same reducer 
6. Intermediate data is sorted only by key part  
7. We load the smaller relation into memory by 

using the tag portion of compound key and 
perform the join   

Improved repartitions join: 
Map function tags the table key not the record tag then 
output composite join key / table tag as in [10]. This 
impact on performance and reduce network load 

 
Fig. 10 pseudo code for reduce side join[3] 
Advantage: 
1. Solved large data sets size that extended than 

memory size by partitioning data. 
2. Resistance to data skew 
Disadvantage: 
1. All records in the large table may be buffered. 
2. The key cardinality is small. 
3. Adding a tag to record and value can cause 

network bottleneck and overhead on network load. 

 
 
 
Fig. 11. show pseudo-code for repartition joins [10] 
3.1.8 Semi -join 

Often, used when the size of one data sets is 
extremely larger than the other. Multiple records will 
not be used for join so that deleting these usefulness 
records will affect the network workload and size of 
datasets to join .we used SJ as abbreviation for this 
algorithm. 

The semi-join framework has three phases: 
Firstly, works a whole map-reduce job that in the 

map function using a hash table to determine a set of 
unique join key from second table whose join key are 
foreign key and do map function to get all join key and 
use reduce function to eliminate redundant records and 
output one file has join key . 

Secondly, map phase load output file from phase one 
into memory and load the second table into HDFS and 
do map function to get key value pair to compare with 
the output table from first phase and get all key records 
can do join with this result and output second file from 
this phase. 

Finally, we have output files from the second phase 
with join key records and load first table in memory 
and do join using broadcast join as discussed earlier. 
Figure 12 show pseudo-code for semi-join [10]. 
Semi join requires 3 Map-Reduce jobs: 

1.  Get a list of unique join keys, S.uk (Map + 
Reduce) 

2.  Load S.uk into memory and loop through R. 
If a record’s key is found in S.uk, emit it. Now 
we have a list of records in R to be joined. 

3. Use a broadcast join to perform the join with S 
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Fig. 12.  Show pseudo-code for semi-join [10] 
Advantage: 

1. Get high performance at large tables data.  
2. Increase the performance by deleting 

usefulness data. 
Disadvantage: 

1. Extra scan for the large table that affects the 
I/O costs. 

2. Takes more time than previous algorithms 
with small size of data. 

 
3.1.9 Per-split semi-join 

Per split semi-join[10] solve the problem with semi-
join that we send all filtered records to every split of 
second table that's will not matched join key so that 
per-split semi-join partition first table join key as 
number of partition without using reduce function with 
the first phase .we used PSJ as abbreviation for this 
algorithm. 
Consist of three separately map-reduce phase: 
1. Map phase generates the set of unique (different, 

individual) join keys in a split Mi of M and stores 
them in the Distributed file system [12,13,14] 
Mi.uk  

2. Map function distributes all N records in memory 
hash table to read unique join key may join with 
Mi.uk files. 

3. Each corresponding record is outputted with a tag 
NLi , which is used by the reduce function to 
collect all the records in N that will join with Mi 
Files with tag NLi join with Mi files with direct 
join. 

Advantage: 
1. Get high performance at large tables data.  
2. Increase the performance by using deleting   
3. Move only records from the large dataset that 

will join with small one.  
Disadvantage: 
1. Second phase are highly cost. 
2. Takes more time than previous algorithms with 

small size of data. 

3.1.10 Bloom filter join 

Bloom filter is used to filter out redundant records 
from one of the two data sets at the map phase [15] by 
constructing bloom filters at the map phase as in [16]. 
Difficult to apply bloom filter because input data at 
map-reduce has no processing order its schedules map 
reduce tasks only not the input splits and bloom filter 
need to be distributed to all nodes in the cluster.  

Bloom filter are used to reduce the number of 
candidate pairs to consider the similarity. Figure 13 
show pseudo-code for bloom filter join [3] Figure 14 
show bloom filter data flow [16]. We used BFJ as 
abbreviation for this algorithm. 

  
Hadoop algorithm modified to apply bloom filter: 
1. Input dataset at map phase is processed 

sequentially for joins. 
2. Input data set processing order effect on the 

processing cost. 
3. Bloom filter execution flow is build dynamically 

within a single map-reduce job. 
 
Blooms filter execution overflow: 
1. Job submission: for every table a map task and 

reduce task are created by job tracker and 
distribute tasks on task tracker (m1 map task for 
table r and m2 map task for s and reduce tasks) 

2. First map phase: first map task tracker read the 
input split for the tasks and produces key value 
pair output Local filter construction: every key-
value pair generated. 

3. Map tasks are divided into r partitions and sent to 
task tracker. At each key partition bloom filter are 
constructed. 

4. Global filter merging: when m1 map tasks are 
completed job tracker send to all task trackers to 
send their local filter resulted to job tracker. Then 
job tracker construct global filter to dataset R. 
when job tracker finishes their tasks new map 
phase to the other data sets is build. 

5. Second map phase: we repeat the first map phase 
steps again for the other data sets till job tracker 
end the process then reduce phase to the two data 
sets are constructed 

6. 6)Reduce phase: it gets two map phases output like 
reduce phase at Hadoop and then sorts the 
intermediate pairs then run reduce function to 
produce output in the last output path. 

Advantage: 
1. Map tasks are assigned in order of the data sets. 
2. Bloom filter are constructed in a distributed 

fashion. 
3. Bloom filter Increased join performance. 
4. Number of map tasks and reduce tasks used are 

decreased by using bloom filter to join operation. 
5. While the intermediate records are reduced reduce 

phase are completed first. 
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Fig.13. Show pseudo-code for bloom filter joins [3] 
Disadvantage: 

1. Performance of join algorithm depends on the 
bloom filter size. 

2. Data sets with large size can effect on bloom 
filter performance. 

3. Bloom filter isn’t filter out tuples before join so it 
may cause redundant. 

4. While global filter for the first map phase still 
working we can’t start another map function so 
that is may increase in time. 

5. If the number of intermediate results has 
significant execution time is increased compared 
to Hadoop. 

 
Fig.14. bloom filter data flow [14] 

 

3.1.11 Map-Reduce Merge Join 

Map-reduce merge join[17] used with massive datasets 
(heterogeneous datasets) it has two completely map-
reduce phases and one merge phase that select the data 
from reduce phase output result according to join 
condition . At merge phase, we have two types of join 
algorithms we can use a hash join or sort merge join. 
Figure 15 show overview of map-reduce merge  

Signature of map-reduce merge are given below:  
1. Map phase: input (k1, v1) → list of intermediate 

[(K2, v2)]. 
2. Reduce phase: aggregates list (K2, [v2]) →output 

another list (K2, [v3]). 
3. Merge phase: combine the two reduce outputs 

((K2, [v3]), (k3, [v4])) → output new join result 
(k4, [v5]) 

 
Fig.15 Overview of Map-Reduce Merge based on [17]. 
Map Reduce merge join algorithm works by a map 
phase and reduce phase independently on the two data 
sets, merge phase takes two reduce phases output 
according to the join condition. 
  
Internally operation inside merge phase[18]: 
1. Partition Selector is selector that determines which 

data partitions produced by up-stream reducers 
should be retrieved and then merged. 

2. Configurable iterators – it can implement two 
different join algorithms by two logical operators 
it includes sort-merge join and nested loop join 

3. Processor – used to handle processing data from 
different datasets 

4. Merger – used to apply merger function for 
processing data from two sources. Figure 16 show 
data flow for map reduce module merge [18]. 

Advantage: 
1. It can be used with heterogeneous data sets. 
2. It used efficiently with two-way join and can be 

used with multi-way join. 
3. Using a sort merge join is efficient than nested 

loop join when using equal join.  
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4. Using nested loop join with complicated joins 
increases the complexity to understand the 
execution flow of a job. 

5. It increases flexibility and usability. 
 
Disadvantage: 

1. Adding new merge phases that increase the 
I/O cost. 

2.  Increase in complexity for data flow. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Fig.16 data flow for map reduce module merge based 
on [18]. 
 

3.2 Multi-way joins algorithms 

Multi-way join usually used to join more than two data 
sets like R and S and T tables [19] as in equation 2. 

                  R (A, B)   ⋈   L (B, C) ⋈  T (C,D)   (2) 

In this section we will cover the following multi-way 
join algorithms map side join, reduce side on shot join 
and reduce side cascade join and explain advantage 
and disadvantage of every algorithm. 

 
3.2.1 Map-Side Join 

It works like to two-way map side join algorithms it 
handles many data sets according to some constraints 
as in [11] .All datasets must use same comparator and 
sort according to them. Only one practitioner must be 
used to partition all the datasets. A key used with each 
data sets are used in the same partition and this key 
must be identical. 
Advantages: 
1. Map side join are more efficient for minimizing 

the cost because we are avoid using shuffling and 
reduce phases. 

Disadvantage: 
1. Every dataset must be sorted and partitioned under 

condition of the join key. 
3.2.2 Reduce-Side One-Shot Join 

Reduce side algorithm uses a function from reduce 
side join from two-way join which uses tags value for 
every record to know the record and datasets [11, 20]. 
It passes Tables Tags for every table need to be joined 
to know how many tables mapper and reduces the 
work with it. Figure 17 shows data flow for reduces 
side one shot join. 
 It has three phases listed as following: 
1. Map phase: Mapper reads data from the input data 

splits and tags each tuple with the table tag based 
on the datasets they originate from. 

2. Partitioning and Grouping Phase: it is ignoring the 
tag value and partition and group data according to 
the key only. 

3. Reduce phase: The reduce phase gets the tuples 
sorted according to key, tag. All tuples have the 
same join key values are going to the same 
reducer. Every join key has a single reducer 
function. Buffers are created by the reducer to hold 
all the datasets without the last one. Then output 
joined tuples have written. 

Advantages: 
1. No needs for a preprocessing phase. 
2. No intermediate results.  
Disadvantage: 
1. Some memory problems from buffering tuples in 

reduce side. 
2. Sensitive to data skew 

 
3.2.3 Reduce-Side Cascade Join 

Reduce-Side Cascade Join [11] is the exact same as 
reduce side join of two data sets and it’s an iterative 
function to reduce side join. It uses calling program to 
create multiple join datasets only two datasets at the 
same time. Considering if we have four datasets (t1, t2, 
t3, t4) we join t1 with t2 result t5 then join t3 with t4 
result t6 finally join t5 with t6 this is the final output. 
Advantages 
1. Best for I/O cost and needed for buffering records 

rarely. 
2. Can join any number of datasets. 
Disadvantages 
1. Multiple jobs in the cluster need to set up that 

cases non-trivial overhead. 
2. many memory spaces are taken by intermediate 

results 

Data 1 Data 2 

Data 3 

Partition selector 

Left processor Right processor 

Left Iterators Right Iterators 

Merger 

WSEAS TRANSACTIONS on COMMUNICATIONS
Marwa Hussien Mohamed, 

Mohamed Helmy Khafagy, Mohamed Hasan Ibrahim

E-ISSN: 2224-2864 137 Volume 17, 2018



 
3.2.4 Comparison for Multiway joins  

According to our previous illustration to multi-way 
join algorithm we can decide which type of algorithms 
may be preferable according to our data size we need 
to join [11]. When we have the same number of tuples 
and same key space Reduce-Side One-Shot Join 
algorithm performance are nearly to the map side join 
algorithms.  

Reduce side one shot are failed and memory 
overflow when increasing the size of datasets over 
than the total  memory size .reduce side cascade join is 
the best join algorithms when increasing data sets size 
than memory size and when reduce side one shot join 
has memory overflow. 

 
4 Comparative Analysis of Join 

Algorithms 
The join algorithm features are presented in table 1. 
Range practitioner used to solve approaches that are 
sensitive to data skew [3]. Algorithms without tagging 
have not additional workload on memory for 
transferring extra data through the network [3], and it’s 
more preferable. Map-reduce join algorithms 
performance is improved in case of semi-join data low 
selectivity [10] and memory overflow possibilities are 
reduced. 

According to table 1 most of the join algorithms are 
sensitive to data skew except in memory join and 
memory backed join.  Join Algorithms using map side 
join are preferable than reduce side join according to 
shuffling and sorting phases and network overload. 
Preprocessing steps before map side phases are 
affected in performance .using bloom filter algorithms 
affect in performance and avoid memory overflow. If 
one of the two data sets is small enough to fit in 
memory we preferable to use map side join. 

Fig. 17 Data flow for Reduce side one shot join based 
on [11]. 
 

 

 

 

TABLE 1: JOIN ALGORITHMS FEATURES 

Two-way 
join 

algorithm 

Pre-
processi

ng 

number 
of  

phases 

Need 
distr. 
cach

e 

Memory 
overflow 

Join 
algorithm 

Map-side 
join yes one no yes Hash  join 

Broadcast 
join no one yes 

Size of 
smaller 

dataset is 
large 

Hash  join 

Reduce 
side join 

Yes for 
one of 
the two 
datasets 

two no 

Tuples 
with the 
same key 

have 
large size 

Cross 
product 

Map 
merge 
join 

Yes  for 
two 

datasets 
one no no Sort  Merge 

join 

Memory 
backed 

join 
no one no 

Size of 
the 

Smaller 
dataset is 
large than 
memory 

size 

Hash  join 

Repartitio
n join 

Yes  for 
one 

of the 
two 

datasets 

two no 

Number 
tuples for 
the same 

key is 
large 

Sort  Merge 
join 

Semi -
join yes three yes 

Size of 
filtered 
datasets 
is large 

Hash join 

Per-split 
semi-join yes three yes 

Size of 
filtered 
datasets 
is large 

Hash  join 

Bloom 
filter join no two yes 

Size of 
data large 

than 
bloom 
filter 

Hash   join 

Map-
Reduce 
merge 
join 

no three yes 

Size of 
the two 
datasets 
is very 
large 

Nested  loop 
join  and sort 

merge join 

 

5 EXPERIMENTAL RESULTS 
We present experimental results of our 
implementation.  We have 3 cluster machines one of 
them master node (name node) and two other are slave 
node (data node).  Cluster configuration consists of 
Intel core i5 2.4 GHz processor, 4 GB memory for 
every node, 500 GB SATA disk and operating system 
Ubuntu 20.203.0 Linux with Apache Hadoop release 
1.2.1. 

  

5.1 Dataset 
We use TPC-H benchmark [21] dataset to evaluate our 
implementation with original Hadoop. We use two 
table customers and orders to join according to join 
key where O_CUSTKEY= C_CUSTKEY where 
customer table has 500,000 record and table orders has 
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1,500,000 records as the start size for our experiment 
and increasing  number of records for two tables as 
shown in table 2 . 

  
Table 2:  Number of Records in Tables 

Number of records Order table Customer table 
2 million 1,500,000 500,000 
4 million 2,500,000 1,500,000 
6 million 4,000,000 2,000,000 
10 million 6,000,000 4,000,000 
12 million 8,000,000 4,000,000 

 
5.2 Two-Way Join Experimental Result 

We present the execution time performance for every 
phase of join at map-reduce like sort, map, shuffle, 
reduce phases time Figure 18 has different graphs 
show Two Way Join algorithms Result-performance 
while increasing in data size. 

   our experiment result show that map side join and 
map merge join has the worst time compared with the 
other join algorithms to complete join according to 
preprocessing phase sorting data running time for this 
two algorithms are increasing in time by 40% from 10 
million records to 12 million records . 

Reduce side join and repartition side join using two 
phases shuffle and reduce phase that's increase in cost 
but reduce in running time compare to map side join 
and map merge join. Repartition join used join key to 
repartition data and using table tag to complete join 
phase this step takes long time than reduce side join at 
10 million records to 12 million records reduce side 
join increased in time by 19% and 48% for repartition 
join.    

Bloom filter join has reduced data shuffling problem 
that takes time as in repartition join and reduce side 
join by constructing bloom filter as preprocessing step 
and eliminating unused record to join from the second 
table  at map phase while running data from 10 million 
record to 12 million records time increased by 18 % . 

In memory join and broadcast join and memory 
backed join has the best time performance because it's 
using hash table and distributed cache to do join and 
isn't needed to use sorting or shuffling or reducing 
phases that increase in cost bust when data size 
increased than memory size cause memory overflow  

Figure 18 (F) show the total time for each algorithm 
at different size of data and table 3 has a total time for 
each join algorithms with different data size that show 
change in running time.  

Algorithms of two-way join with more than one 
phase chart  figure 19 show total join time because 
semi-join and presplit semi-join has different three 
map-reduce phases. Semi join and per-split semi-join 
algorithms are highly cost with small data sets but 
while increasing in data size do the best performance 
time than two-way join algorithms discussed earlier 
according to extra scan for large table and figure 18 
show that semi-join running time better than presplit 

semi-join according to very highly cost for the second 
phase and extra scan for large table running time from 
10 million records to 12 million records increased by 
2% for semi-join and 9% for presplit semi-join. 
 
Table 3: Total time for all join algorithms 

Join algorithm 2 
million 

4    
million 

6    
million 

10 
million 

12 
million 

In memory Join 
(IMJ) 30 43 44 48 61 

Broadcast Join 
( BJ) 31 46 48 51 64 

MemoryBacked 
Join( MBJ) 32 48 49 52 66 

bloomfilter Join 
( BFJ) 45 59 90 108 128 

ReduceSide 
Join (RSJ) 54 71 109 130 155 

Repartition Join 
 (RJ) 87 101 133 143 212 

Map Side Join 
(MSJ) 162 198 245 268 378 

MapMerge Join  
( MMJ) 164 203 250 275 387 

Semi Join 
 (SJ) 140 143 146 150 160 

Per -Split Semi 
Join 
(PSJ) 

160 164 168 170 175 

 

 
 Fig.18-a. 2 million records   

 Fig.18-b. 4 million records   
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 Fig.18-c. 6 million records   

 
Fig.18-d. 10 million records          

 
  Fig.18-e. 12 million records 

 
Fig.18-f. Total time for each algorithm 
Fig.18 Two way join result per phase with different 
size of data. 

 
Fig.19 Semi -join and per split semi join result with 
different size of data. 
 

3.1 Multi-way join experimental result 

We run our experiments on three different datasets at 
one time. We use three tables’ customer table has 
4,000,000 records, order table has 8,000,000 records 
and Lineitem table has 12,000,000 records Figure 20 
shows that reduce side cascade join has worst time 
performance according to adding tag to every record 
and shuffling phase that affect performance and 
joining two tables only at one time then repeat join 
operations according to number of tables.  

Reduce side one shot has better performance time 
than reduce side cascade join. Map side join has the 
best time according to avoided using shuffling and 
reducing phases that take time and increase in cost. 

Fig.20 Multi-way joins total time 

 
6 Conclusion and Future Work 

This work show comparative study of join algorithms 
in map reduce for two-way and multi-way join 
algorithms. Using map side join is affecting join 
performance than reduce side join and decrease I/O 
costs. But map side join isn’t useful for large data set. 

our experimental result show the difference 
performance time between map side join and reduce 
side join algorithms that we conclude that map merge 
join and map side join has largest time to get join 
results and broadcast join has least time according to 
using shuffling phase at reduce side join. And we show 
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the difference increasing in time running for every 
algorithm when increasing in data size. We discuss 
some types for multi-way join algorithms and show the 
difference in performance between theses algorithms 
we show by experimental result that reduce side 
cascade join has longest time and map side join the 
least time to get final join result.    

In the future work we want to implement the join 
algorithms using several datasets benchmarks [21, 22] 
and conduct performance measurement and increasing 
in data size to show difference time running for multi-
way join algorithms. 
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	Do some iteration on the input.
	Generate a key / value pair from the input.
	Using the key of every input became easiest to group all intermediate values.
	Make iteration based on resulting groups.
	Do Reduction on each group to generate output.
	Implementation of map-reduce
	Map-reduce has one master node sends job to all task tracker by divide the input file into M splits by using the key value pair and following task tracker jobs by using heart beat to avoided failed.
	Task Tracker writes their output to a local disk and partition this output result to some reduce tasks.
	Job Tracker assign reduce tasks to task tracker Then reduce workers read the new key/value input data from local disk then produce final output result after sort and aggregate data by using the key.
	If one task tracker fails job tracker assign node task to another one workers.
	Step 1: the MAP Phase
	User provides the MAP function
	• Input: (key, value)
	• Output: (key, value) System applies the map function in parallel to all (input key, value) pairs in the input file.
	Step 2: the REDUCE Phase
	User provides the REDUCE function:
	• Input: (Intermediate key, bag of values)
	• Output: all pairs with the same key are grouped together and sent values to the same reducer to get the output result.
	Distributing the smallest operand(s) to all nodes, and performing the join by the Map or Reduce function.
	Map-side join and reduce-side join.
	Repartition join is a type of reduce side join that works by adding a tag to the input key and to value to determine any table where record. It partition records according to join key and group all records together before reduce phase. At the shufflin...
	It solves the buffering problem for all records during the join process. Figure 11 show pseudo-code for repartition join [10].We used the abbreviation RJ for this algorithm.
	Uses composite Keys: tag+ key
	Where tag is an identifier for the parent table
	Improved repartitions join:
	Map function tags the table key not the record tag then output composite join key / table tag as in [10]. This impact on performance and reduce network load
	Often, used when the size of one data sets is extremely larger than the other. Multiple records will not be used for join so that deleting these usefulness records will affect the network workload and size of datasets to join .we used SJ as abbreviati...
	The semi-join framework has three phases:
	Firstly, works a whole map-reduce job that in the map function using a hash table to determine a set of unique join key from second table whose join key are foreign key and do map function to get all join key and use reduce function to eliminate redun...
	Secondly, map phase load output file from phase one into memory and load the second table into HDFS and do map function to get key value pair to compare with the output table from first phase and get all key records can do join with this result and ou...
	Finally, we have output files from the second phase with join key records and load first table in memory and do join using broadcast join as discussed earlier. Figure 12 show pseudo-code for semi-join [10].
	Semi join requires 3 Map-Reduce jobs:
	Get a list of unique join keys, S.uk (Map + Reduce)
	Load S.uk into memory and loop through R. If a record’s key is found in S.uk, emit it. Now we have a list of records in R to be joined.
	Use a broadcast join to perform the join with S
	Per split semi-join[10] solve the problem with semi-join that we send all filtered records to every split of second table that's will not matched join key so that per-split semi-join partition first table join key as number of partition without using ...
	Bloom filter is used to filter out redundant records from one of the two data sets at the map phase [15] by constructing bloom filters at the map phase as in [16]. Difficult to apply bloom filter because input data at map-reduce has no processing orde...
	Bloom filter are used to reduce the number of candidate pairs to consider the similarity. Figure 13 show pseudo-code for bloom filter join [3] Figure 14 show bloom filter data flow [16]. We used BFJ as abbreviation for this algorithm.
	Advantage:
	Disadvantage:
	Performance of join algorithm depends on the bloom filter size.
	Data sets with large size can effect on bloom filter performance.
	Bloom filter isn’t filter out tuples before join so it may cause redundant.
	While global filter for the first map phase still working we can’t start another map function so that is may increase in time.
	If the number of intermediate results has significant execution time is increased compared to Hadoop.
	Map-reduce merge join[17] used with massive datasets (heterogeneous datasets) it has two completely map-reduce phases and one merge phase that select the data from reduce phase output result according to join condition . At merge phase, we have two ty...
	Map Reduce merge join algorithm works by a map phase and reduce phase independently on the two data sets, merge phase takes two reduce phases output according to the join condition.
	Multi-way join usually used to join more than two data sets like R and S and T tables [19] as in equation 2.
	R (A, B)   ⋈   L (B, C) ⋈  T (C,D)   (2)
	In this section we will cover the following multi-way join algorithms map side join, reduce side on shot join and reduce side cascade join and explain advantage and disadvantage of every algorithm.
	Map-Side Join
	It works like to two-way map side join algorithms it handles many data sets according to some constraints as in [11] .All datasets must use same comparator and sort according to them. Only one practitioner must be used to partition all the datasets. A...
	Reduce-Side One-Shot Join
	Reduce-Side Cascade Join
	Comparison for Multiway joins
	Dataset
	Two-Way Join Experimental Result
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